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Abstract 

Iterative methods for the reconstruction of tomographic images with 
unconventional source-detector configurations 

By Abey Mukkananchery, M.S. 

A thesis submitted in partial fulfillment of the requirements for the degree of 
Master of Science at Virginia Commonwealth University. 

Virginia Commonwealth University, August 2005 

Major Director: Dr. Paul A. Wetzel 
Associate Professor, Biomedical Engineering 

Co-director: Dr. Alen Docef, Ph.D. 
Assistant Professor, Department of Electrical and Computer Engineering 

X-ray computed tomography (CT) holds a critical role in current medical practice 

for the evaluation of patients, particularly in the emergency department and intensive care 

units. Expensive high resolution stationary scanners are available in radiology 

departments of most hospitals. In many situations however, a small, inexpensive, portable 

CT unit would be of significant value. Several mobile or miniature CT scanners are 

available, but none of these systems have the range, flexibility or overall physical 

characteristics of a truly portable device. The main challenge is the design of a geometry 

that optimally trades image quality for system size. The goal of this work has been to 

develop analysis tools to help simulate and evaluate novel system geometries. To test the 

tools we have developed, three geometries have been considered in the thesis, namely, 

parallel projections, clam-shell and parallel plate geometries. The parallel projections 
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geometry is commonly used in reconstruction of images by filtered backprojection 

technique. A clam-shell structure consists of two semi-cylindrical braces that fold 

together over the patient's body and connect at the top. A parallel plate structure uses two 

fixed flat or curved plates on either side of the patient's body and image from fixed 

sources/detectors that are gated on and off so as to step the X-ray field through the body. 

The parallel plate geometry has been found to be the least reliable of the three geometries 

investigated, with the parallel projections geometry being the most reliable. For the 

targeted application, the clam-shell geometry seems to be the solution with more chances 

to succeed in the short term. We implemented the Van Cittert iterative technique for the 

reconstruction of images from projections. The thesis discuses a number of variations on 

the algorithm, such as the use of the Conjugate Gradient Method, several choices for the 

initial guess, and the incorporation of a priori information to handle the reconstruction of 

images with metal inserts. 
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1 Chapter One - Introduction 

1.1 Tomography 
Tomography, derived from the Greek word tornos, is an X-ray photography 

technique by which a single plane is photographed whilef outline of structure in other 

planes are eliminated. In conventional radiography the three-dimensional volume of the 

body is compressed along the direction of the X-ray, to a two-dimensional image, which 

results in significant reduction in visibility of the object of interest. The spatial resolution 

is excellent but the image suffers from poor low-contrast resolution [I]. 

( 2 1  I c 7 

Figure 1.1 Illustration of conventional X-ray. (a) Acquisition setup, and (b) an example of 
a chest X-ray image. (From [I]) 

X-ray computed tomography holds a critical role in current medical practice for 

the evaluation of patients, particularly in the emergency department and intensive care 

units. This is because the technique provides rapid and reliable imaging of three- 

dimensional anatomy and is less dependent on patient cooperation for adequate image 

quality. It is particularly sensitive for detecting acute intracranial blood, bony 
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abnormalities of the head, spine and torso, and a variety of other pathologic processes 

associated with emergent or urgent medical conditions of the head, chest and abdomen. 

For these reasons CT is a mainstay for the evaluation of patients with acute or recent head 

trauma, providing critical information for the management of this prevalent health risk. It 

is the first diagnostic modality of choice for patients suspected of cerebral infarction 

(stroke), patients with new neurologic deficits. In addition, CT is commonly used in the 

emergency setting to assess for internal thoracic and abdominal injuries, appendicitis and 

Cholecystitis. Because of its value in demonstrating pathologic processes not evident on 

plain chest X-ray imaging, CT of the chest has seen increasing utilization in the intensive 

care setting for this purpose as well [2]. 

1.2 History of Computer Tomography 
The development of the first clinical CT began in 1967 with Godfrey N. 

Hounsfield at the Central Research Laboratories of EMI, Ltd. England [3]. He deduced 

that X-ray measurements taken through a body from different directions would allow for 

the reconstruction of its internal structure. The first clinically available CT device was 

installed at the Atkinson-Morley hospital in 1971 after further refinement of the data 

acquisition and reconstruction algorithms. 

Since the introduction of the first clinical scanner, tremendous advancements have 

been made in CT technology. Improvements in spatial and low-contrast resolution are 

evident. Scan time per slice has been reduced by a factor of 1.34 per year over the last 30 

years. A wide range of gantry speeds, reconstruction times, and tube power settings are 

now available. 
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1.3 Generations of CT Scanners 
In a first generation CT scanner (Figure 1.2), only one pencil beam is measured at 

a time. The X-ray tube and the detector translate linearly to cover the entire object. The 

entire apparatus then rotates by one degree to repeat the scan [I]. 

For a second generation CT scanner (Figure 1.3), dt each instant, measurements 

from 6 different angles are collected. Although the X-ray source and the detector still 

need to be linearly translated, the X-ray tube and detector can rotate every 6 degrees [I]. 

In the case of a third generation CT scanner (Figure 1.4), at any instant, the entire 

object is irradiated by the X-ray source. The X-ray tube and detector are stationary with 

respect to each other while the entire apparatus rotates about the patient. Several 

technology challenges associated with this configuration, such as detector stability and 

aliasing, led to the investigation of the fourth generation concept [I] .  

For a fourth generation CT scanner, at any instant, the X-ray source irradiates the 

detector in a fan-shaped X-ray beam, as shown by the solid lines in Figure 1.5 [I]. A 

projection is formed, with the collection of measurement samples of a single detector 

over time. 

The electron beam scanner, also known as a fifth generation scanner, shown in 

Figure 1.6, was built for cardiac applications. The motion of the electron beam provides 

the rotation of the source [I]. To freeze cardiac motion, a complete set of projections is 

collected within 20 to 50 milliseconds. A high-speed electron beam is focused and 

deflected by carefully designed coils to sweep along the target ring, similar to cathode ray 

tube. Fan shaped X-ray beams are produced and collimated to a set of detectors, 
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represented by the top arc of 216 degrees. Since there is no mechanical moving part in 

the system, the scan time is around 50 milliseconds [I]. 

Figure 1.2 First generation CT scanners. (From [I]) 

Figure 1.3 Second generation CT scanner. (From [I]). 
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Figure 1.4 Third generation CT scanner. (From [I])  

Figure 1.5 Fourth generation CT scanner. (From [I]) 
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Figure 1.6 Geometry of electron beam scanner. (From [I]) 

1.4 The process of computed tomography 
The formation of images in a CT scanner involves three processes [3], as shown 

in Figure 1.7. The first process, data collection, refers to the collection of X-ray 

transmission measurements from the patient. Once X-rays pass through the body they fall 

into special detectors that measure the transmission values. Once enough transmission 

measurements have been collected they are sent to the computer for processing. The 

computer uses special mathematical techniques known as reconstruction algorithms to 

reconstruct the CT image. After the image has been reconstructed, it can be displayed and 

stored as well for future the images are usually displayed on a cathode ray tube (CRT) 

although other technologies have become available. Image manipulation has become 

rather popular now and various software packages are now available to manipulate the 

images to make them more useful for observation. 
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Figure 1.7 Steps in the production of a CT image (From [3]) 

A critical component of a CT system, image recbnstruction from projections 

produces sharp, clear images of cross-sectional anatomy. Radon, an Austrian 

mathematician, proved that it is possible to reconstruct an image of a two-dimensional or 

three-dimensional object from a large number of its projections from different directions. 

Similarly, images of the human body can be reconstructed by using large numbers of 

projections from different locations. consider an object divided into slices. Radiation 

passes through each of the slices and is projected into the detector that sends signals to 

the computer, which generates images of the slices. A more definite definition of this 

technique is given by Herman (1980), who stated, "Image Reconstruction from 

projections is the process of producing an image of a two-dimensional distribution from 

estimates of its line integrals along a finite number of lines of known locations" [3]. 

1.5 A Miniaturized CT Scanner 
Computer Tomography is one of the most widely used modalities in the imaging 

of both hard and soft tissue organs. High-resolution stationary scanners are available in 

radiology departments of most hospitals. Typically, a patient walks or is wheeled to the 

radiology department and into the CT room, and a set of tomographic images are 

collected. In some situations however, a small mobile CT unit [3] would be of significant 

value. Here are several possible scenarios: 
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In the emergency room and the intensive care unit, a small mobile CT unit could 

help the attending physician make a quick diagnosis, reducing the time before 

adequate care is administered. 

A similar situation may occur in a trauma vehicle, helicopter, or battlefield 

hospital, where a large conventional CT scanner may not be available. 

In the operating room, a small mobile CT unit with tableside control and display 

could be used to guide surgery in reduced visibility procedures, such as needle 

positioning in brain tumor treatment. 

In home care or remote care situations, a small mobile CT unit could be used 

when bringing the patient to a hospital is not economically feasible. A nurse or 

radiology technician could collect the images to be transmitted to a radiologist or 

other specialist via telemedicine networks. 

A miniature mobile CT imaging system can be designed to meet the requirements 

for emergency room and operating room use [3]. This system is capable of simple 

transportation, rapid application for imaging acquisition with a configuration that allows 

real-time interventional/surgical techniques. Several mobile or miniature CT scanners 

have been proposed. They address some of the requirements for such a unit, but fall short 

to provide the range, flexibility or overall physical characteristics to meet the ER-based 

requirements for a truly portable device. 
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2 Chapter Two - Background 

2.1 The Role of Computed Tomography 
X-ray computed tomography holds a critical role in current medical practice for 

the evaluation of patients, particularly in the emergency department and intensive care 

units (Chen et a1.1996; Huda et a1.1997; Lee and Chew, 1998; Rizzo et a1.1995; Rothrock 

et al. 1997). 

dimensiona 

quality. It 

This is because the technique provides rapid and reliable imaging of three- 

.1 anatomy and is less dependent on patient cooperation for adequate image 

is particularly sensitive for detecting acute intracranial blood, bony 

abnormalities of the head, spine and torso, and a variety of other pathologic processes 

associated with emergent or urgent medical conditions of the head, chest and abdomen. 

For these reasons CT is a mainstay for the evaluation of patients with acute or recent head 

trauma, providing critical information for the management of this prevalent health risk 

(Bagley, 1999; Bullock et a1.1996). It is the first diagnostic modality of choice for 

patients suspected of cerebral infarction (stroke), and patients with new neurologic 

deficits. In addition, CT is commonly used in the emergency setting to assess internal 

thoracic and abdominal injuries, appendicitis and cholecystitis (Pena et al. 1999; 

Feliciano and Rozycki, 1999; Novelline et al. 1999). 

Because of its value in demonstrating pathologic processes not evident on plain 

chest X-ray imaging, CT of the chest has seen increasing utilization in the intensive care 

setting for this purpose as well (McCunn et al. 2000; Gross and Spizarny, 1994; Ivatury 

and Sugerman, 2000). 
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Another important use of CT scanning is for addressing questions of pathology 

when conventional X-rays are unable to provide adequate information. Particular 

examples of this are in evaluations for intrathoracic pathology (Gross and Spizarny, 

1994; Ivatury and Sugermean, 2000; Novelline et al. 1999; White et al. 1999), and in 

evaluations of the cervical spine in trauma patients. In the latter case, the lower cervical 

spine is often difficult to evaluate due to the impediment of the shoulder structures on 

lateral views in heavy-set individuals. CT imaging of the lower cervical spine in such 

case quickly provides the information necessary to determine the presence or absence of 

structural injuries to this area, facilitating the management of these patients (Tan et 

a1.1999; Tehranzadeh et al. 1994). Again however, this requires transporting the patient 

for CT imaging to acquire these studies [2]. 

2.2 Current State of the Art and Technical Limitations 
One of the major drawbacks of CT scanning has been the fact that these devices 

are typically large structures requiring dedicated space for their installation. This has 

been due to the requirement for X-ray shielding and for climate-controlled housing of 

high-speed data and graphics processing computer equipment. The placement of CT 

devices in Radiology suites thus requires that patients travel from the emergency 

department, ICU or hospital ward to have the imaging study performed. Placing 

additional CT scanners in the emergency department has helped to alleviate this problem 

in many larger institutions, but then these scanners are less available for use in other 

clinical applications. This has even resulted in patients sometimes being transported from 

ICU or hospital ward to the emergency department for CT scans (the reverse logistical 
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problem). The transport process places a burden on medical and nursing staff and adds 

risk for patients who may be clinically unstable or deteriorating. Not infrequently, CT 

scans for patients are deferred or delayed because they are too unstable for transport, 

delaying the diagnostic process, which could potentially provide critical information as to 

how to manage them [2]. 

The potential for using the CT scanner for image guidance during interventional 

or operative procedures is also limited by similar logistical issues. Aside from installing a 

CT scanner in an operating room, which carries issues of potential under-utilization of a 

useful and expensive imaging device, such procedures must be carried out in the 

radiology-imaging suite. Because these suites are rarely set up properly for such 

procedures and because such procedures usually consume considerable time, safe 

performance of the procedure, efficient use of the imaging suite and maintenance of 

elective imaging schedules become problematic. The availability of a portable CT unit 

has demonstrated the value of addressing these problems with a more compact device, 

but this device remains bulky and unwieldy, severely limiting its portability. 

Nevertheless, its development and production serve as strong support for the value of 

increasing the portability of CT imaging. Indeed, the use of conventional portable X-ray 

machines and C-arm fluoroscopy units in hospitals, operating rooms and emergency 

departments, serves to highlight the kinds of applications that could potentially be 

improved by the availability of an easily portable miniature CT device. 

Reducing the size of a CT unit such that it could be made mobile and portable has 

been a goal of ongoing research, and the medical imaging industry has made significant 
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strides in this area, like the "Light Speed" CT family of scanners introduced by General 

Electric Medical Systems in 1998.[4] 

2.3 Potential Benefits and Applications of a Miniature CT Scanner 
The most obvious potential applications for a portable miniature CT scanner 

would be in the emergency room, intensive care unit and operating room. A high-quality 

portable miniature CT would allow rapid acquisition of head CT images on trauma 

victims while their evaluation and management by trauma nursing and medical specialists 

could continue nearly uninterrupted. Many cases that are routinely carried out with 

fluoroscopic guidance could be more accurately carried out with intra-operative CT 

guidance. Similarly, many cranial neurosurgical procedures currently relying on intra- 

operative navigation with pre-operative images or on intra-operative MR imaging would 

be well suited to performance using an intra-operative miniature CT scanner. A variety of 

other scenarios can also be envisioned in which a miniature CT scanner would be 

advantageous or ideal. These include any settings in which space or portability of the unit 

would be of value. Potential scenarios of this sort include transportable imaging units 

(panel truck mobile scanners as opposed to tractor-trailer units), hospital ship 

installations, and a variety of defense- and space-related applications [2]. 

2.4 Tomography: a Theoretical Background 
The foundations of computer tomography are in the theory of image 

reconstruction from projections. In a typical system geometry, a set of projection signals 

is acquired, each with an associated angular rotation, as shown in Figure 2.1. Using signal 
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processing algorithms, these angular projections can be converted into 2-D cross- 

sectional slices. 

In the simplest model, the X-ray source irradiates the object of interest x(tl, tz), 

resulting in a projection signal at the detector. A set of these projection signals is 

collected from the detector at different angles. A projection is a line integral through the 

object. The projection signal at a given angle 8 is denoted p(0,z) and is given by 

a 

p(0 , r )  = Ix(rcos 0 - {sin 0,rs in 0 + {cos 0 ) d t  

Figure 2.1 Illustration of a computed tomography system [2] 
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This relationship between an image and its set of projections is called the Radon 

transform. The Radon transform is invertible, and applying the inverse transform allows 

for the reconstruction of the image from its projections: 

1 " p(@ Y) 
~ ( 4 , &  1 = - J- dyd8, where z = t, cos 8 + t2 sin 8 

2n, z - y  

In practice, several assumptions made in the simple theoretical model above are 

not true: 

The angular variable 8 is discrete, that is, a finite number of projections is 

captured. 

Reconstruction is performed on a computer using a sampled data representation. 

That is, p(8,z) is sampled along the projection axis z. 

The inverse Radon transform is computed using discrete approximations of the 

differentiation and integration operations. 

The source of radiation consists of a finite number of tubes, possibly moving 

along a circular support mechanism. 

Each X-ray tube may produce a cone beam rather than a parallel beam. 

The projection capture subsystem consists of a finite number of sensor devices. 

These issues have been addressed in various image processing literatures and 

modified versions of the Radon equations have been proposed [2]. 
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2.5 Reconstruction algorithms 
Several algorithms have been developed for calculating the image from a set of 

projection data. These include backprojection, iterative methods and analytic methods. 

Backprojection: Back projection [3] is illustrated in Figure 2.2. Consider four 

beams of X-rays passing through an unknown object to produce projections, PI ,  P2, P3 

and P4. The problem involves using these projection data to reconstruct the image of the 

hidden image in the box. The projected data are back projected to form corresponding 

images BPI, BP, BP3, and BP4. Each of these images is consistent with its corresponding 

projection and is constant along the projection direction. The reconstruction involves 

averaging all the backprojected images to form an image of the object. Although 

intuitively straightforward, this method does not produce an exact reconstruction of the 

image, regardless of the number of projections, and therefore is not used in practical CT 

systems. 

Filtered Backprojection: Filtered backprojection is similar to the backprojection 

technique. The difference between the two techniques is that the projections are filtered 

prior to backprojection in order to remove the "star-like" blurring artifacts characteristic 

of the simple backprojection technique. Filtering is accomplished by convolving each 

projection with a one-dimensional Hilbert filter, as described in the inverse Radon 

formula shown in the previous section. It has been shown that, as the number of 

projections increases, the reconstructed image converges towards the exact cross-section 

image [3]. 
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Unknown object. 

m 

Figure 2.2 The backprojection reconstruction technique (from [3]) 

Fourier Reconstruction: Like the filtered backprojection method, Fourier 

reconstruction produces an exact reconstruction of the image. It is based on the Fourier 

slice-projection theorem, which states that the 1-D Fourier transform of a projection is 

equal to a slice through the 2-D Fourier transform of the image. Therefore, given enough 

projections, the 2-D Fourier transform of the image can be reconstructed with sufficient 

accuracy. The image is then obtained by performing an inverse Fourier transformation. 

The challenge posed by this method is due to the fact that the image and its transform are 

represented on a rectangular grid, while the slice-projection theorem assumes a polar 

grid. Therefore, interpolation formulas must be used to convert the data from one 

sampling pattern to the other, thus adding to the complexity of the reconstruction 

algorithm. 
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Iterative Algorithms: An iterative reconstruction algorithm [3] starts with an 

initial guess and iteratively applies corrections to the current image estimate. The 

correction term is typically a measure of the mismatch between the known projection 

data and the projections computed from the current estimate. The iterative process 

continues until this mismatch is zero or within acceptable limits. Some of the popular 

techniques in this category are the Simultaneous Iterative Reconstruction Technique 

(SIRT), the Iterative Least-Square Technique (ILST) and the Algebraic Reconstruction 

Technique (ART). These techniques differ in the way in which the corrections are applied 

to the subsequent iterations. Our reconstruction algorithms, described in the next chapter, 

are all adaptations of the ILST. 

As an example of a simple iterative reconstruction, consider the illustration in 

Figure 2.3, where projections of a 2-by-2 matrix are computed as row sums and column 

sums. The goal is to reconstruct the matrix elements from these sums. Let us choose an 

initial guess that is a constant matrix where each element is equal to the average of the 

four elements in the unknown matrix. This average can be computed as (3+7+4+6)/2/4 = 

2.5. In a first correction step, the matrix columns are modified so that the row sums are 

correct while the column sums are unchanged. This is achieved by adding to the columns 

a correction vector equal to the original horizontal ray sums minus the new horizontal ray 

sums divided by two, that is, 
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Figure 2.3 Illustration of an iterative algorithm 

This results in the matrix shown in Figure 2.3(c). In a second correction step, the 

same procedure is applied to the matrix rows, resulting in the matrix in Figure 2.3(e). As 

we can see, this second estimate is actually equal to the original matrix. The algorithm 

converges in two steps. Practical tomography reconstruction problems are more complex 
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than this simple example because projections are not only computed in the vertical and 

horizontal directions. As a consequence, these algorithms rarely end with a perfect 

estimate. 

2.6 Comparison of Distance Metrics 
To measure the accuracy of an image reconstruction process, or the mismatch 

between actual and estimated projection sets, several distance metrics can be used. The 

choice of the distance metric will be based on analytic tractability (especially the ease of 

computing partial derivatives), computational complexity, and suitability for the 

particular type of data (both images and projections take positive values only). 

Euclidean Distance: The Euclidean distance function [14], also known as L2- 

distance, measures the 'as-the-crow-flies' distance. The formula for this distance between 

a vector X = (xl,  x2, . . . x,) and a vector Y = (y,, yz, .. . y,) is: 

The Euclidean distance between two data points involves computing the square 

root of the sum of the squares of the differences between corresponding values. 

Sometimes, this distance is computed in its normalized form, known as the Mean Square 

Error (MSE), equal to the Euclidean distance divided by the number of elements n in 

each vector. 

Manhattan Distance Metric: We can define the Manhattan distance [14], also 

known as the L1-distance, as the distance between two points measured along axes at 

right angles. The Manhattan distance between two items is the sum of the differences of 
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their corresponding components. The distance between a vector X = (x,, x2, ... x,) and a 

vector Y = (yl, yz, . . . y,) is: 

The difference between the Euclidean distance and the Manhattan distance is 

illustrated in Figure 2.4. 

Man hattan Euclidean 
Figure 2.4 Illustration of the difference between the Manhattan distance and the 
Euclidean distance [13]. 

Infinity metric: The infinity distance, also known as the La-distance or 

maximum distance [14], is given by 

d ( X , Y )  = ma*@, - y,l, ..... ,lx., - ~ ~ 1 ) .  (2-5) 

The advantage of this metric is that it provides a measure of the maximum 

deviation between an ideal image and an approximate one. Unfortunately, this metric is 

very difficult to treat analytically. Derivatives of functions involving the max( , ) operator 

are difficult to compute. 

I-Divergence: The I-divergence [17] also known as information divergence or 

relative entropy or Kullback-Leibler distance, was first introduced to compare two 

probability distributions P = (PI, p2, . . . p,) and Q = ( q ~ ,  qz, . . . qn) using the formula 
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This formula applies to probability distributions, which have positive values that 

add up to one. For a more general case, when the sum of the elements is not one but the 

elements are positive, the metric becomes 

The I-divergence is a non-symmetric information theoretic measure of the 

distance between P and Q. A key property is that D(P,Q) 2 0, with equality if and only if 

P = Q. This quantity, while not a true metric due to its non-symmetric nature, is useful for 

problems where the data are naturally positive-valued, including problems in optical and 

hyper-spectral imaging, and in approximation of joint probabilities. It has several 

properties analog to the Euclidean distance, such as the Pythagorean Theorem and the 

cosine theorem [14]. 

Both the MSE and the I-divergence metrics are analytically tractable, so we will 

focus on them. Moreover, the I-divergence assumes positive data values, which fits the 

characteristics of CT images and projections. The effect of this fact on reconstruction 

accuracy is assessed in the Results chapter. 

2.7 High Impedance Artifacts 
A major challenge with X-ray computed tomography (CT) is metal artifact 

reduction. Because of the higher atomic number a metal object attenuates X-rays in the 

diagnostic energy range much more than soft tissues and bones, and much fewer photons 

can reach the detectors. It is well known that when metal is present, pronounced dark and 
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bright streaks are produced in reconstruction with conventional filtered back projection as 

seen in Figure 2.5. These artifacts seriously degrade image quality, particularly near the 

metal region [18]. 

Figure 2.5 High Impedance Artifacts in Image using (a) Filtered Backprojection and (b) 
the Van Cittert technique 

The effects of metallic objects on X-ray CT scanning have been studied 

extensively, and the following three effects have been found to be most important: 

Beam hardening, due to prostheses attenuating X-rays differently in the diagnostic 

energy range, introduces a nonlinear effect in recording the projection data and 

leads to low-frequency comet-tail artifacts around prostheses, especially between 

prostheses and other high density objects (such as bones). 

Projection data noise is mostly caused by low photon counts and produces high 

frequency streaking artifacts. Decreasing X-ray attenuation by using less 

attenuating materials or by increasing X-ray energies to facilitate photon 
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penetration is effective for metal artifact reduction. However these approaches are 

not clinically practical, because prosthetic materials are not selected based on the 

X-ray attenuation characteristic, and photon energy increment is limited by the 

permissible radiation dose [19]. 

Motion interference enhanced due to the high contrast between metals and 

neighboring anatomical structures. 

Conventional Filtered Backprojection algorithms are computationally efficient but 

produce poor images when complete and precise projection data are unavailable, such is 

the case when metal objects are present. Iterative reconstructive algorithms have been 

successfully applied with incomplete/noisy projections data (see Figure 2.5). 
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3 Chapter Three - Methods, Materials & Systems 

In this chapter, we present the requirements for the design of a miniaturized CT 

scanner, we introduce two possible system geometries, and briefly discuss some of the 

tools used in the evaluation of these geometries. 

3.1 Usability Requirements 
In designing a miniaturized portable CT scanner, the first questions that need to 

be answered are related to its usefulness in the targeted applications. The relevant system 

parameters are discussed briefly [3]. 

Portability: The ideal portable unit will be light and small enough to be carried in 

a suitcase. In a less desirable embodiment, the system will be supported by wheels and 

will have portability features roughly similar to that of a fluoroscopy C arm device or 

portable x-ray machine. The physical dimensions should be similar to the size of a 

suitcase (70 c n ~  x 60 cm x 20 cm). 

Weight: Portability requires that the component count, packaging and power 

supply system be constructed so as to keep the total weight within 30 kg. 

Size: Portability requires that the system, in its inactive (packed) state, fit into a 

reasonable size case. In the active state, the system should allow to be easily deployed in 

emergency rooms, ambulances, operating rooms, and to be easily moved through hospital 

doorways. 

System Configuration: One important goal in the configuration of this system 

will be that it will be intervention-friendly. That is, open access to the patient during the 
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scanning process will be possible, positioning of the patient within the device for image 

acquisition will be feasible in the operating room, emergency room, mobile medical 

facilities and radiology suite environments. Given the intended use of this device 

virtually at the patient's bed side or in isolated environments, the configuration will be 

mechanically simple and reliable. Furthermore, the system will be characterized by easily 

cleaned surfaces which can be readily draped with standard (polyethylene film) 

techniques for carrying out sterile procedures. 

Image Quality: The final product of any medical imaging system is an image of 

the organ or tissue being examined. A useful imaging system produces an image that is a 

very close representation of the physical reality. For digital imaging, two measures of 

image quality are popular. Image resolution reflects the ability of the imaging system to 

accurately display small details and it is measured in pixels per unit of length (inch, mm). 

Image bit depth reflects the ability to distinguish between areas with very close 

properties. For the particular case of CT imaging, this means tissues with very similar 

density, such as soft tissues within the brain. Bit depth is measured in bits per pixel. 

Objective measures are based on computing a norm of the difference between the ideal 

and actual images. The most popular measure is the mean square error (MSE) and the 

related signal-to-noise ratio (SNR). It is anticipated that initial designs will involve some 

sacrifice in image quality and performance with respect to resolution and scanning time 

in order to enable portable, robust imaging. This trade-off is analogous to that between 

conventional high resolution MRI and open magnet MRI. The latter is more comfortable 

for many patients, but requires a sacrifice in image resolution. 
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Human Interface: The image display is an important component. An external 

display (not part of the portable system) is preferable. For other situations, a small built- 

in LCD display will be available. Possible input devices are: ballpoint or equivalent 

point-and-click device, small keyboard, or other custom console. 

Computer Interface: The system is to be physically compatible with the medical 

environment and other devices which are commonly used, as well as to provide image 

data output which will meet the demands of evolving medical communications and 

information processing standards (DICOM, for example). It should provide wireless 

connection to acquisition/image processing computer, display and keyboard and a 

telemedicine radio link to hospital (so a surgeon can have paramedic adjust positions, 

etc). 

3.2 Implementation Requirements 
Several implementation issues [3], both technical and economical, will affect the 

design of the miniaturized system. 

Geometry: The geometry of the radiation source and capture subsystems will 

determine the image quality. Within the constraints imposed by usability and safety 

requirements, the following parameters need to be optimized: 

The arc size necessary to capture full head (or body, in general) 

The number and geometry of sources of radiation 

The number and geometry of radiation detectors 

Mobility of sources/detectors: should they be static or mobile? 

Source/Detector Parameters: 
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Radiation source type, power consumption, size 

Radiation detector type, power consumption, size 

Radiation beam angle, angular energy distribution 

Power Requirements: The device will be designed to utilize standard available 

electrical power (1 10 volts AC in the US), drawing no more than 10 A. The device 

should feature a low power mode (for example, for field applications) where a 12 V 

backup/emergency/alternate source is used. Different requirements may apply to military 

applications. 

Computational Requirements: The reconstruction from projections algorithm is 

computationally intensive. Usability requirements set limits to both scanning speed and 

computational subsystem size. The hardware and software components of this subsystem 

need to be designed accordingly. 

3.3 System Geometries 
In conventional CT systems, the gantry houses the imaging technology that 

acquires the CT data. The image capture system rapidly rotates around the patient and 

table. This implies a complex and heavy mechanical design. In our miniaturized design, 

alternate solutions are proposed that alleviate these limitations. Two proposed system 

geometries are shown in Figure 3.1 and Figure 3.2. Their features are discussed below, 

and their advantages and disadvantages are summarized in Table 1. Software tools have 

been developed to simulate the projection process for both structures, as well as the 

image reconstruction process. 
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3.3.1 The Clam-Shell Structure 

This system [3], shown in Figure 3.1, consists of two semi-cylindrical braces that 

fold together over the patient's body and connect at the top, thus allowing almost 360 

degrees traversallrotation of the imaging system. This seems to be the solution with more 

chances to succeed in the short term. The diameter of the braces should be chosen to 

accommodate the largest patient size, and the width and thickness are dictated by the size 

of the sources and detectors and their mechanical enclosing. The structure can be built 

sufficiently rigid so that the sources and detectors are in known fixed relative positions. 

The reconstruction algorithm for this structure is very similar to conventional, cone-beam 

CT scanners. 

There are two challenges associated with this structure. One is packing the source 

and detectors sufficiently close to fit on the braces. This may limit the resolution of the 

projections, and therefore the reconstructed image quality. The other concern has to do 

with the top and bottom connections, which will introduce gaps in the source and detector 

arrays. This means that there will be missing projections in the data set. This problem is 

similar to the problem of removing streaking artifacts from CT scans with high-density 

insert. 
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Figure 3.1 The clam-shell structure 

3.3.2 The Parallel Plates Structure 

This system [3], shown in Figure 3.2, uses two fixed flat or curved plates on either 

side of the patient's head and image from fixed sources/detectors that are gated on and 

off so as to step the X-ray field through the head. The advantage of this solution is easy 

access to the investigated body part, making it useful in CT-assisted surgery. 

The disadvantage is that it may require a higher radiation dose than the clam-shell 

structure. The plates need to be sufficiently far from each other to allow access to the 

patient. The height of the plates determines the width of the field of view. The width 

(depth in the image) can be designed to be sufficiently large to allow for multiple slices to 

be reconstructed. This is beyond the scope of our work. Conventional reconstruction 

algorithms cannot be applied directly to this geometry. 

The main challenges associated with this geometry are handling the very irregular 

field of view and mechanically placing sources and detectors at fixed positions. 
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Figure 3.2 The parallel-plates structure 

Structure 

Clam-Shell 

Parallel Plates 

Advantages 

Small size 
Allows almost 360 degrees field of view 
Simpler reconstructions algorithm, 
similar to cone-beam 
Rigid geometry 

Allows 3-D imaging 
Less intrusive 
Allows access to the imaged organ 

Disadvantages 

Must be opened and closed 
More intrusive in an 
operating room 
3-D imaging difficult 

Larger size 
Narrower field of view 
More complex 
reconstruction algorithms 
Flexible structure may 
introduce errors 
More radiation dose. 

Table 1 Comparison of the two structures [3]. 
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3.4 Phantoms 
In the early days of imaging, imaging instruments were calibrated by making 

measurements of composite objects with known attenuation coefficients. These objects 

are called phantoms [20]. The problem with this approach was that it mixed artifacts 

caused by physical measurement errors with those caused 6y algorithmic errors. In order 

to replace the algorithmic errors, Larry Shepp [21] developed a mathematical phantom. 

He suggested one give a mathematical description of a phantom to create simulated and 

controlled data. This way the algorithmic errors could be separated from mechanical 

errors. A mathematical phantom is created in the following way: 

A simplified model of a slice of the human head is described as an arrangement of 

ellipses and polygons. 

Each region is assigned a density or attenuation coefficient. 

The continuous model is digitized by superimposing a regular grid and replacing 

the piecewise continuous densities by their averaged values over the squares that 

make up the grid. 

Measurements are simulated by integrating the digitized model over a collection 

of strips, arranged to model a particular measurement apparatus. 

The robustness of an algorithm to different measurement errors such as beam 

hardening, noise, patient motion and miscallibration can be tested by incorporating these 

errors into the simulated measurements. A priori, it is known exactly what is being 

measured and hence one can easily compare the reconstructed image to the known model. 



www.manaraa.com

3 2 

Mathematical phantoms are especially useful in the study of artifacts caused by sampling 

errors and noise as well as for comparison of different algorithms. 

The Shepp-Logan phantom, shown in Figure 3.3, is one of the most popular CT 

phantoms, perhaps because its software description is distributed with Matlab. It contains 
L 

elliptical shapes of size and attenuation factors typical for head CT scans. 

Figure 3.3 Shepp-Logan phantom generated using Matlab (256x256 pixels) 

3.5 Sinograms 
For CT imaging, the X-ray source irradiates the object of interest resulting in a 

projection signal at the detector. A set of these projection signals is collected from the 

detector at different angles. A projection is a line integral through the object. The set of 

projections are sometimes called a sinogram, because of the sinusoidal structures visible 

in the two-dimensional array [3]. A sinogram is a gray scale plot where the density of the 

image is a monotone function of the measured values. Sinograms are generally difficult 

to interpret directly. As they contain all the information available in the data set, they 
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may be preferable for machine-based assessments [20]. Figure 3.4 shows typical 

sinograms generated by using the clam-shell and parallel plate geometry. 

I i t !  l r )  

Figure 3.4 Computed sinograms for (a) the clam-shell geometry and (b) the parallel plate 
geometry. 

3.6 Compound Materials and Their Densities 
A narrow beam of mono-energetic photons with an incident intensity I,, 

penetrating a layer of material with mass thickness x and linear attenuation coefficient p, 

emerges with intensity I given by the Lambert-Beers equation 

I = I ,e-p.  (3-1) 

The attenuation coefficient p is a basic quantity used to calculate the penetration 

and the energy deposition by photons in biological, shielding and other materials. It is 

tabulated for various materials usually as the mass attenuation coefficient p/p, where p is 

the material's density. Reference [22] provides a list of densities and coefficient values 

for a variety of relevant materials. 
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4 Chapter Four - Discussion 

In this chapter, we describe in detail the algorithms used to evaluate image 

reconstruction for the two proposed system geometries and their parameters 

4.1 Matrix Formulation of the Sinogram Calculation 
A more useful and more compact formulation of the Radon transformation is 

obtained if the image and the sinogram are represented as vectors. If x is the vector of 

pixel values in the image (in raster order) and y is the vector of projection values in the 

sinogram, the relation between these vectors is given by 

y = Mx, (4-1) 
where M is the projection operator matrix. The element mi, of the matrix M 

represents the weight (or contribution) of pixel j to the ith sinogram value. Therefore, the 

matrix M has a number of rows equal to the number of pixels in the image and a number 

of columns equal to the number of source-detector pairs. To compute the element mij of 

the matrix M, we determine if the corresponding line integral intersects the rectangular 

pixel i; if it does, then mij is equal to the length of the intersection; otherwise it is zero. 

To accurately compute the matrix M, we developed a precise projector [3] that 

computes exact projections for images composed of uniform elliptical and rectangular 

attenuators, such as rectangular pixels. Let us consider an X-ray beam traveling from the 

source located at (xA, yA) to the detector located at (xB, yB), through a rectangular object, 

as shown in Figure 4.1. To determine the contribution of the rectangle to the projection, 

we need to first decide whether the beam intersects the rectangle, and, if it does, to 

compute the length of the intersection. The following algorithm achieves these goals. 
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1. Translate and rotate the coordinates so that the rectangle is centered at the origin and 

its sides are aligned with the x-y axes. 

x' = cos(cp)(x - xc) + sin(cp)(y - yc) 
y' = -sin(cp)(x - xc) + cos(cp)(y - yc) 

2. Compute the intersection length 1 using the following algorithm: 

If the line is horizontal (y'A = y'B ) then 

f b ,  1 Y ' A  l s b  
0, else 

If the line is vertical (x'A = x'B) then 

2a, 1 X ' A  )I a 

0, else 

Compute the coordinates of the intersection points 

m =  Y E  - Y A  
XB - XA 

xcl  = xA + (-b - yA)/m 
xc2 = xA + (b - yA)/m 
yc 1 = yA + (-a - xA)/m 
yc2 = yA + (a - xA)/m 

If the line does not intersect the rectangle, that is, 

min(lxcll, 1 ~ ~ 2 1 )  > a, then 1 = 0 
If the line intersects the rectangle, then 

xs = sort(-a, a, xcl ,  xc2) 
ys = sort(-b, b, ycl,  yc2) 



www.manaraa.com

Figure 4.1 (a) Geometry of a rectangular attenuator; (b) Calculation of line integral 
through the rectangular attenuator. 
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Given the matrix formulation, the reconstruction from projections problem can be 

seen as a matrix inverse problem, with solution 

x = M - ' ~ .  (4-8) 
This is not a feasible solution, because M is, in general, not a square matrix. 

Therefore, alternate solutions must be used. 

4.2 The Van Cittert Algorithm 
A number of physical problems can be modeled by equations of the form 

y(n1 ,n2> = D[x(n1 ,n2)l (4-9) 
where D[.] is a distortion operator that acts on the input sequence x(nl,n2) to 

produce the output sequence y(nl,n2). In many cases it will be very difficult to determine 

the inverse operator D-' such that 

x(n1,nz) = D-I [y(n1,n2)1. (4- 10) 
Even if D-' is approximated and implemented, its application to y(nl,nz) could 

produce large errors if y(nl,nz) is known imprecisely due to such uncertainties as 

measurement or quantization noise. One alternative for finding the inverse operator is by 

the application of the method of successive approximations. It is based on starting with 

an initial guess and then iteratively updating the estimate using an equation of the form 

~k+l(nl, n2) = F [xk(n17n2>l, (4- 1 1) 
where F is an update operator that varies from one iterative algorithm to another. 

In all cases though, the exact solution is a fixed point of this operator, that is, for the 

exact solution x(nl,n2), 

x(nl, n2) = F [x(nm)I .  (4- 12) 
The iterative methods provide a convenient way to incorporate prior knowledge 

of the properties of x(n ,n2). Assume, for example, that all the pixels in the image x(nl ,n2) 
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are known to have values in a certain interval. Then after each image update the pixel 

values can be forced to be within this interval by "clipping" at the interval boundaries. 

Using a priori information generally increases convergence speed and reduces the 

probability that the process converge to a local minimum. 

The Van Cittert algorithm uses an iterative update given by 

xk+l (nl ,n2) = X k(nl ,n2) + h(y(nl ,n2)-D[x(n1 ,n2>1> (4- 13) 
where A is a constant that determines the convergence speed and stability of the 

process. A value too small will lead to slow convergence, while a very large value may 

turn the algorithm unstable. For a few particular distortion operators, formulas have been 

derived for the optimum value of this parameter. In our research, we have manually 

adjusted this parameter to obtain an optimal convergence speed. 

The general equation above can be rewritten for the matrix formulation of the 

projection operator as 

Xk+l  = X k + h(y-Mx). (4- 14) 
The terms in this equation have inconsistent sizes, as the matrix M is not square 

(in other words, the image and the sinogram have different sizes). A version of this 

algorithm, called the "reblurred" Van Cittert algorithm has been proposed to address this 

issue. The reblurred iteration is 

X ~ + I  = x k + hM7(y-Mx), 
where M' is the transposed matrix M. 

One advantage of using the iterative procedure is that it can be stopped after finite 

number of iterations, at which point the output may be subjectively preferable to the 

actual inverse filter output. 
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4.3 The Conjugate Gradient Algorithm 

The Van Cittert method is an optimization algorithm that searches for the 

optimum along the direction of the gradient of the function to be minimized (in our case, 

the distance d(y,Mx)). This approach can lead to very slow convergence when the 

function to be minimized is highly asymmetrical in its variables in the neighborhood of 

the minimum. Faster convergence is achieved by the conjugate gradient method, which 

uses a different way to determine the direction of search. 

The steepest gradient method minimization starts at a point p, and as many times 

required, we move from point pi to the point pi+l by minimizing along the line from pi, in 

the direction of the local gradient - Vf (pi) .  The method will perform many steps in going 

down a long, narrow valley, even if the valley is a perfect quadratic form. This is because 

the new gradient at the minimum point of any line minimization is perpendicular to the 

direction traversed. Therefore with the steepest method, right angle has to be taken even 

if it doesn't lead to the minimum. The conjugate gradient method proceeds not down the 

new gradient but rather in a direction that is perpendicular to the old gradient, and to all 

previous directions traversed [24]. 

Conjugate gradient methods [24, 251 are the most popular methods for solving 

large systems of linear equation. CG methods provide a suitable method for calculation of 

N x N linear systems. 

A x = b  (4- 16) 
The minimization is carried out by generating succession of search directions pk 

and improved minimizers xk, At each stage a quantity ak is found that minimizes f(xk+ 
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ukpk) and xk+ l  is set to the new point xk + ukpk. The pk and xk are built such that xk+l is 

also the minimizer off over the whole vector space already taken, { p i ,  p?, . . . . , pk } .  

4.4 The Initial Guess 
Estimating an initial guess is very important in the feconstruction of images. The 

more accurate the estimation is, the better the convergence of the final image to the actual 

image. There are different methods for the generation of the initial guess. The techniques 

employed in our research were: zero initial guess, the pseudo-inverse solution, and the 

backprojection solution. 

Zero initial guess: The zero matrix [27] is generated by using the Matlab 

function zero(). The size of the matrix is equal to the size of the actual image. 

x = zero(size(x)) 
This initial guess does not use any a priori information. 

Pseudo-inverse solution: A pseudo-inverse function [27] in available in Matlab 

that generates, for an input matrix M, a pseudoinverse matrix pinv(M) with the property 

that 

M pinv(M) M = M. 
Our initial guess is 

x = pinv(M) y. (4- 19) 
This initial guess uses the projection data as a priori information, but the 

pseudoinverse calculation is highly sensitive to noise in the data. 

Generalized backprojection: A generalized backprojection function, similar to 

the backprojection technique applied to parallel projections geometry and described in 

the previous chapter, has been generalized for arbitrary source-detector geometries. The 
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generalized backprojection function takes the matrix and the sinogram as the input and 

outputs the initial guess. Sinogram values are backprojected along the corresponding line 

integrals. Pixels not covered by line integrals are interpolated from those who are. As 

usual, the backprojected images are finally averaged to obtain the initial guess. 

4.5 Use of a Priori Information 
Despite the great progress in CT, artifacts due to metallic objects remain a major 

problem in several important clinical applications, including orthopedic, dental, and spine 

imaging. These artifacts severely impair visualization and quantification of anatomic 

andlor pathologic features. Several methods have been proposed but none have of them 

produces results in a robust and efficient manner [19]. Incorporating the known 

attenuation map and location of high density structures as constraints substantially 

improves image quality [28]. When prior information of high density objects locations is 

ignored, significant streaking artifacts remain even when the detector model and the 

algorithm are perfectly matched. 

For reconstruction of an image with a high density object, the reconstruction 

algorithm has been modified to account for a priori information available about the 

object's location and density. The most convenient way to incorporate a priori 

information is through the use of mask image. 

Masks [29] are grayscale images that are used to control other images. They may 

be opened, edited and otherwise changed as we desire. What makes a grayscale scale 

image a "mask" is simply how we use it. In our case, we use two masks: the high density 
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mask and the circular mask. They are both binary masks, that is, each pixel is a zero or a 

one. 

The high density object mask or metal mask is equal to one for pixels 

corresponding to the metal object, thus helping to distinguish between the tissues and 

metal inserts that may be present in the image. We use this mask by forcing all the pixels 

selected by the mask to the known density of the metal object. 

The circular mask is a useful mask if the shape of the region of interest is less 

than the entire image. It assumes that all pixel values outside a circular region are zero, 

and is therefore equal to zero for these pixels. We use this mask by forcing to zero all 

pixels not selected by the mask. 

Depending on how the mask has been computed, a mask can be known exactly or 

it can be determined from the projection data. For the purpose of testing, an exact mask is 

always available because we created the original image, therefore both the region of 

interest and the location and shape of the metal object are known. In a practical setting, 

all that is available is the projection data. Therefore, masks must be computed from this 

data. The steps we used to compute the metal and circular mask are described in the next 

chapter. 

4.6 Matlab functions 

The purpose of this thesis was to develop iterative reconstruction algorithms for 

CT images with unconventional source-detector configurations using a suitable software 

package. The algorithms were written and implemented in Matlab. Most of the Matlab 
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functions were developed specifically for the thesis research. However certain functions 

incorporated in the research were adapted from Matlab code developed by Martin King 

[26]. The following table lists the Matlab functions used for the thesis research. 

User defined Matlab Functiom 

backproj 

clam-image32 

clam-testing 

high-imp 

Employs the backprojection technique similar to one used in parallel 
projections geometry. It takes in the projection matrix M and the 
sinogram values and generates an initial guess 
Reconstructs a CT image for clam-shell structure. The program also 
generates the phantom image and the sinogram. 
Generates the matrix M, sinogram and reconstructs the phantom image 
from a suitable initial guess. 
Reconstructs CT image in the presence of metals, when the location of 
the metal is ~rovided.  

1 line-disp32 

test-mtx I Generates the matrix M for parallel projections. 
Matlab functions referenced from Numerical Recines in C. r251 

Determines if the line intersects the pixel and if i t  does, measures the 
length of intersection. 

mask-test 

pplate-testing 

test iter 

Similar to high-imp except that it is used when the location of the 
metal is not known. 
Generates the matrix M, sinogram and reconstructs the phantom image 
from a suitable initial guess for parallel plate structure. 
Reconstructs the CT image for ~ara l le l  ~roiections. 

func I Finds the minimum of a function 

cg 
dfunc 

Finds a vector that gives the minimum of a function. 
Finds the first derivative of the function to be minimized. 

func-mnbrak I Brackets the minimum. 
Matlab Defined Standard Functions 

I func-golden 
Finds the minimum with tolerance and returns independent variable 
which is scalar and function value as golden. 

L 2  I 

Table 2 Matlab functions used in this research 

phantom 

pinv 

Zero 

Used to generate a phantom. 
Pseudo-inverse function that takes in the product of the matrix m and 
sinogram and generates an image similar to the actual image 
Generates an image 
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5 Chapter Five - Results 

5.1 Image Reconstruction for Parallel Projections 

Although the parallel projections geometry is not novel and has been thoroughly 

studied, we use it to test the functionality of the tools we developed. It is a useful 

benchmark. 

In all experiments, the sinogram is generated by multiplying the matrix with the 

actual image (i.e. the phantom or the actual CT image). A zero initial guess is used in all 

cases, except where a pseudo-inverse or generalized backprojection initial guess is 

explicitly specified. The reblurred Van-Cittert technique is applied to the initial guess and 

the operation is performed until the resulting image converges to the actual image. 

Convergence is determined by the amount of iterations required for the reconstructed 

image to stop improving visually. 

Phantom Image: For reconstruction using parallel projections, a 32x32 phantom 

image was generated using the Matlab function phantom 0. The Matlab function 

test-ma() generates an 1167x1024 projection matrix M. The size of the sinogram is 

32x32 colresponding to 32 sources and 32 detectors. The reconstructed images are shown 

in Figure 5.1. It takes around 10000 iterations for the image to converge. It is observed 

that as the number of sources and detectors are increased the rate of convergence 

becomes faster. It takes half the number of iterations for the image to converge if the 

sources and detector are doubled. Reconstruction of the phantom image is the fastest in 
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parallel projections requiring minimum number of iterations and time for the image to 

converge. 

Actual CT Image: The parallel projections geometry was tested to reconstruct a 

CT image of the human head. Due to computational complexity limitations (mostly the 

amount of memory needed to store the matrix M), an original 512x512 CT image was 

downsampled vertically and horizontally by a factor of 16 to obtain a 32x32-pixel test 

original. The function test-mtx generates an 1167x 1024 matrix. The size of the sinogram 

is 32x32 corresponding to 32 sources and 32 detectors. The reconstructed images are 

shown in Figure 5.2. It takes roughly 25000 iterations for the image to converge. As the 

number of sources and detectors are increased the rate of convergence becomes faster. 

Reconstruction of the CT image is the fastest in parallel projections requiring least 

number of iterations and time to converge. The parallel projections geometry works very 

well on CT images even with minimum number of sources and detectors. This was 

expected, as this is the most regular of all geometries. 
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restored image (iter=1000) 

Figure 5.1 Reconstruction of phantom image using the par; 
sources, 32 detectors, 10000 iterations, lambda=0.5). 

allel projections geometry (32 
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d image (iter=l 

sources, 32 detectors, 25000 iterations, lambda=0.5). 

5.2 Image Reconstruction Using the Clam-Shell Geometry 

Phantom Image: Unlike the parallel projections, we require more sources and 

detectors to reconstruct a 32x32-pixel image. For reconstruction using the clam-shell 

geometry, a 32x32 phantom image was generated. For our experiment we considered 128 

sources and 128 detectors. The function test-mtx generates a 16384x1024 matrix. The 

size of the sinogram is 128x128 corresponding to 128 sources and 128 detectors. It takes 

roughly 40000 iterations for the image to converge, as shown in Figure 5.3. 

Reconstruction of the phantom image is slower with clam-shell as compared to parallel 

projections. 
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Figure 5.3 Reconstruction of phantom image using the clam-shell geometry (128 sources, 
128 detectors, 40000 iterations, lambda=0.5). 

CT Image: In the case of reconstruction of CT images using the clam-shell 

geometry, we considered two different cases: human brain image for the imaging of bone 

structures human brain image for the imaging of soft tissue. 

In the case of reconstruction of the CT image with bone structures, we had to 

consider 128 sources and 128 detectors. Consider Figure 5.4: a 32x32 phantom image 

was generated. The function test-mtx generates a 16384x1024 matrix. The size of the 

sinogram is128x128 corresponding to 128 sources and 128 detectors. It takes roughly 
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45000 iterations for the image to converge. Reconstruction of the phantom image is 

slower with the clam-shell structure as compared to the parallel projections geometry. 

In the case of human brain with tissue visible, we again considered 128 sources 

and 128 detectors (Figure 5.5) and the same procedure was followed. However more 

iterations are required for convergence to occur as compared to earlier cases. 

Figure 5.4 Reconstruction of CT image (bone visible) using the clam-shell geometry (128 
sources, 128 detectors, 45000 iterations, lambda=0.5). 
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Figure 5.5 Reconstruction of CT image (visible tissue) using the parallel projections 
geometry (128 sources, 128 detectors, 45000 iterations, lambda=0.5). 

5.3 Image Reconstruction for Parallel Plate Geometry 

For reconstruction using the parallel plate geometry, a 32x32 phantom image was 

generated. The Matlab function test-mtx generates an 1167x1024 matrix (see Figure 5.6). 

The size of the sinogram is 32x32 corresponding to 32 sources and 32 detectors. Unlike 

the parallel projections and clam-shell geometry, reconstruction using parallel plate 

geometry results in a very poor output. The resultant is blurred and it is difficult to 

distinguish between the different layers in the image. This is because, unlike the clam- 

shell and parallel projections which are more or less circular in structure with X-ray 
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beams being detected in all directions, there are no X-rays passing through the image 

vertically in a parallel plate structure as it is open at the top and the bottom. The solution 

to this problem could be to increase the length of the plates or to use slightly curved 

plates. 

sources, 32 detectors, 60000 iterations, lambda=0.05). 

5.4 Comparison of the Parallel, Clam-Shell and Parallel Plate Configurations 
The Mean Square Error (MSE) for each configuration was plotted for different 

number of sources and detectors. The number of sources and detectors considered are 16, 

32 and 64. It can be observed from the Figure 5.7 that as the number of sources and 

detectors increase for each configuration there is a corresponding decrease in the mean 
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square error. The Mean Square Error is lowest for parallel projection configuration as 

compared to that for the parallel plate and clam-shell configurations. Increasing the 

number of sources and detectors results in increase in the number of projections 

generated at the detector. Hence more data is available for processing information and a 

clearer image is obtained. 

Figure 5.7 Comparison of MSE for different number of sources and detector 

5.5 Comparison of the Three Configurations using Plain Gradient and Conjugate 
Gradient Methods 

Parallel Projections: Figure 5.8 was plotted for the paral1,el projections 

configuration with 32 detectors and 32 sources and a square image of size 32x32. The 
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initial guess was considered as set of zeros of size 32x32. The Mean Square Error was 

plotted against the number of iterations for the two gradient methods. The Mean Square 

Error when obtained using the plain gradient methods is initially very high but as the 

iterations increase, there is a sharp decrease from 0.16 units to zero where it remains 

constant. For the conjugate gradient method, MSE remains almost constant around 0.038 

units throughout except for a small decrease initially. Note that the units used for the 

MSE are the same units used for the pixel values. Since all our images are normalized, 

the pixel values are between 0.0 and 1.0. So a MSE value of 0.038 represents 3.8% of the 

dynamic range of the image. 

Clam-shell Geometry: The plot of MSE for the clam-shell geometry is similar to 

the parallel projections configuration. Figure 5.9 was obtained using a 32x32 square 

image, 32 detectors and 32 sources and initial guess as set of zeros of size 32x32. The 

plain gradient method gives a better result for clam-shell as compared to conjugate 

gradient method over all iterations. 

Parallel Plate Geometry: The parallel plate configuration generates a better 

result with conjugate gradient method as compared to plain gradient technique. The error 

is an exponentially rising curve initially and then becomes constant for plain gradient and 

conjugate gradient methods. Figure 5.10 is obtained by considering a 32x32 square image 

with 32 sources and 32 detectors. Since neither algorithm actually converges, it is 

irrelevant which yields the smaller MSE. 

It can be observed from the three plots that the Mean Square Error (MSE) is the 

least in case of parallel projections as compared to the clam-shell and parallel plate 
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geometries. The MSE decreases to zero in the case of parallel projection and the clam- 

shell however, it is the opposite in case of parallel plate. The MSE decrease is steeper in 

the case of parallel projections as compared to the clam-shell geometry. 
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Figure 5.9 Comparison between the plain gradient and the conjugate gradient methods for 
clam-she1 1 geometry. 
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Figure 5.10 Comparison between the plain gradient and the conjugate gradient methods 
for parallel plate geometry. 

5.6 Comparison of Different Initial Guess Choices 
A comparison of Mean Square Error was performed by considering three different 

initial guesses: the zero solution, the pseudoinverse solution, and the generalized 

backprojection solution. The comparison was performed by considering a CT image of 

human head of size 32x32 pixels. The experiment was performed by application of plain 

gradient iterative reconstructive algorithm for the clam-shell geometry. From the graph of 

MSE versus the number of iterations in Figure 5.1 1, it can be observed that the time and 

number of iterations required for convergence to occur with the backprojection solution 

function is much smaller as compared to that required with the other two guesses. 
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Comparison of MSE with number of iterations for different initial gu 

5.7 Handling of High Impedance Objects 
It is well known that when metal is present in the region of interest, pronounced 

dark and bright streaks are produced in reconstruction with conventional filtered back 

projection. These artifacts seriously degrade image quality, particularly near the metal 

region [IS]. Iterative reconstructive algorithms have been successfully applied with 

incomplete/noisy projections data. We will consider two cases: the location and shape of 

the metal object is known, and they are not known. In both cases, the density of the metal 

is known. In both cases, a high-density circular object was introduced in the phantom 
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image. To simulate photon starvation, the line integrals passing through the metal object 

have been set to zero, as shown in Figure 5.12. 

Location of High Density Object Known 

We implemented a reblurred Van Cittert iterative technique and applied it to the 

parallel projections, clam shell and parallel plate geometries. To model photon starvation, 

All the rows of the matnx M corresponding to sinogram values falling in the shadow 

created by the metal object have been set to zero. The reconstruction algorithm was 

executed with this modified matrix. Prior information was available in the form of a 

metal mask and a circular mask. 

The results of the investigations are presented in Figure 5.13. Experiments for 

parallel projections were initially performed with 32 sources and 32 detectors and then 

with 32 sources and 129 detectors. With 32 sources and detectors the image is blurred 

with considerable streaking. However on increasing the number of detectors to 129, when 

the prior information is provided and a mask is applied the restored image is clear, except 

for few light streaks observed around the object. If the a priori is not used, a black spot 

can be seen at the location of the object as shown in Figure 5.12, although the effect is 

not too damaging to the image quality. 
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projections. a) Original image (size 32x32) with high density object, b) Ideal sonogram, 
without photon starvation, c) Simulated real sonogram, with shadow created by photon 
starvation, d) Restored image using the Van Cittert method without a priori information. 

Figure 5.13 a) Reconstructed image with circular mask and metal mask, b) Reconstructed 
image with circular mask and no metal mask, c) Reconstructed image without circular 
mask but with metal mask used. 
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From Figure 5.14, it can be observed that the clam-shell geometry shows results 

similar to that shown using parallel projections. However, if prior information of the 

metal location is not provided, the reconstructed image is much more blurred as 

compared to the images resulting from parallel projections. Thus, prior information of the 
I 

metal is more important in case of clam-shell geometry. 

( c >  ( d )  
Figure 5.14 Reconstruction of a phantom image with a high density object using the 
clam-shell geometry. a) with circular mask and metal mask, b) with circular mask and no 
metal mask, c) without circular mask but with metal mask, d) without a priori 
information. 

For the parallel structure, no improvement was observed by using a priori 

information. The streaking artifacts visible in Figure 5.15 are even more pronounced 

when high attenuation objects exist in the body. 
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Figure 5.15 Reconstruction of phantom image with a high density object using the 
parallel plate geometry. a) with circular mask and metal mask, b) with circular mask and 
no metal mask, c) without circular mask but with metal mask, d) without a priori 
information. 

Location of High Density Object not Known 
In practice, none of the masks is available as side information. The mask 

information has to be extracted from the projection data. The metal mask is estimated as 

follows: 

Start with a mask equal to zero. 

For each line integral with a value greater than a threshold value (determined 

using the histogram, as mentioned before), add 1.0 to the mask values of the 

pixels that are touched by the line integral. 
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When all line integrals have been processed, set mask values larger than a 

threshold (about 25% of the maximum value of the mask) to 1.0 and the rest to 

0.0. 

The circular mask is estimated in a similar fashion, only the threshold in the 

second step is set to zero. The mask estimates are remarkably accurate, and the 

reconstruction results are indistinguishable from the case when the masks were known. 
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6 Chapter Six - Conclusion 

The aim of this thesis research was to develop reconstruction algorithms for 

unconventional tomography geometries that can be implemented in a miniaturized CT 

scanner. We investigated three such structures, namely, parallel projections, clam-shell 

and parallel plate. Our experiments prove that the parallel projections geometry produce 

excellent results compared to clam-shell and parallel plate geometries. However the clam 

shell geometry shows dramatic improvement in results with increasing sources and 

detectors. 

Another factor that influences the output of the clam-shell geometry is the 

positioning of sources and detectors. The sources and detectors can either be placed 

alternatively or opposite to each other. If placed alternatively then the geometry is similar 

to that of the parallel projections, resulting in clearer images. The parallel plate geometry 

is the least effective of all the three. The images generated by the parallel plate geometry 

are very blurry. This is due mostly to the gap in the pattern of X-rays. Besides, it requires 

a higher dose of radiation. However by increasing the length of the plates, the quality of 

the image may be improved. 

The Van Cittert technique, also known as the plain conjugate method is one of the 

most commonly used distance minimization techniques for the reconstruction of CT 

images. However, it is slower as compared to other minimization techniques. To increase 

the speed of iterations the Conjugate Gradient (CG) Method was implemented, which 

proved to be faster but less accurate than the plain gradient method. Several choices for 
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the initial guess have been evaluated, and the generalized backprojection has been found 

to best help achieve fast convergence. 

We also tried to tackle the issue of streaking artifacts in images due to presence 

of metallic artifacts in the vicinity of the region of interest in the body. It can be seen that 

if prior information is provided, there is a substantial improvement in the quality of the 

image. We implemented a priori information in the form of masks that distinguish the 

metal from the rest of the image and separate the patient body from its surrounding. We 

have shown that the masks can be accurately estimated from the projection data. 

Several topics that we suggest for further research are iterative methods based on 

the minimization of the I-divergence (instead of the MSE), the effect of the finite size of 

detectors, the effect of the square pixel approximation, ignored in our research so far. 

These factors can be integrated into the reconstruction algorithms we developed, as steps 

towards a real, practical, miniaturized CT scanner. 
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APPENDIX 

To generate initial guess using backprojection technique 

function x = backproj(H,y) 
% The (unfiltered) backprojection solution 
x = zeros(size(H,2),1); 

I 

for r=l:size(H,l), 
xl = zeros(size(H,2),1); 
idx = find(H(r, : )-=0) ; 
xl(idx) = y(r) . *  H(r,idx) / sum(H(r,idx)) ; 
x = x + xl; 

end 
x = x/size(H, 1) ; 

Reconstruction algorithms for parallel projections 

% % % % % % % % % % % % %  to generate the matri 
% image: always 1.0x1.0 area centered 
% pixels are located in the middle of 
rows = 32 ; 
cols = 32; 
x-coords = ((-cols+l):2:(cols-1) ) / 
y-coords = ((-rows+l):2:(rows-1) ) / 
global mtx 
% source-detector geometry 
theta-vals = [0:1:321*180/32; 
thetas = length(theta-vals); 

% % % % % % % % % % % % % %  
at origin 
their rectangular areas 

% compute projection matrix 
mtx = zeros(thetas*ds,rows*cols); 
D = 1.5; % distance between sources and detectors 
L = 1.5; % width of line of sources and detectors 
NS = ds; % number of sources 
ND = ds; % number of detectors 

for itheta=l:thetas, 
itheta; 
theta = theta-vals(itheta); 
theta-rad = theta*pi/l80; 
r = 0.5*sqrt(L*L+D*D); 
beta = atan(L/D) ; 
src-angle1 = theta-rad + pi - beta; 
src-angle2 = theta-rad + pi + beta; 
src-zl = r*exp ( j *src-angle1 ) ; 
src-z2 = r*exp ( j *src_angle2 ) ; 
src-z = src-zl + (src-z2-src-zl)*[l:2:(2*NS-l)]/(2*NS); 
src-x = real(src-z); 
src-y = imag(src-z); 
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det-angle1 = theta-rad + beta; 
det-angle2 = theta-rad - beta; 
det-zl = r*exp(j*det-anglel); 
det-z2 = r*exp (j *det_angle2) ; 
det-z = det-zl + (det-z2-det-zl)*[l:2:(2*ND-l)]/(2*ND); 
det-x = real(det-z) ; 
d e t 2  = imag(det-z); 

for id=l:ds, 
xl = src-x (id) ; 
yl = src-y (id) ; 
x2 = det-x(id) ; 
y2 = det-y (id) ; 
h=line-disp-32(~1,~2,yl,y2,x-c00rds,y-~00rd~); 
mtx((itheta-l)*ds+id,:) = h(:)'; 

end 
end 
save h.txt mtx -ascii; 

% % % % % % % % % % % %  reconstruction algorithm % % % % % % % % % % % % % % % %  
N=32; % number of sources/detectors 
rows = 32; 
cols = 32; 
lambda=O .5 ; 
load h.txt; 
S=sparse (h) ; 

% testing 
%img32=zeros(32,32); img32(8:24,8:24)=1; 
img32=phantom( 'Modified Shepp-Logan1,32);% img32=img32/max(img32(:) ) ;  
figure(1); subplot(l,3,1); imagesc(min(img32,l)); title( 'original 
image');xlabel('rows');ylabel('cols');colormap~gray~256~ ) ;  

global sino; 
sino=S*img32(:); sin0 =reshape(sino,49,33); 
save sino.txt sino -ascii; 
subplot(l,3,2);imagesc(sino); 
colormap(gray(256));title('sinogram');xlabel(detectors);ylabel('sourc 
es'); 

m=backproj (S, sino) ; 
for 1=1:60000, 

a=sipo-reshape(S*m(:),49,129); 
fprir-tf (1, '%i %f\n', 1, norm(abs(a(:)) ) ) ;  

z=reshape (S ' *a ( : ) , N, N) ; 
m=reshape(m,32,32)+1ambda*z; 
%yk+l (nl, n2 ) =yk (nl, n2) +lambda*z (nl, n2 ) *h 
m = max(m, 0) ; 
m = rnin(m, 1) ; 
if 1==1000, 

subplot(2,2,3); imagesc(min(m,l)); 
title('restored image (iter=1000) ' ) ;  

end 
if mod(1,lO) ==l, 
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figure (2) ; imagesc (min (m, 1) ) ; 
title('restored image (iter =25000) I ) ;  

colormap(gray(256) ) ;drawnow; 
end 

Reconstruction algorithm for clam-shell geometry 

% % % % % % % % % %  to generate matrix and reconstruct the image % % % % % % % % % %  
rows = 32; 
cols = 32; 
x-coords = ((-cols+l):2:(cols-1) ) / (2*cols); 
y-coords = ((-rows+l):2:(rows-1) ) / (2*rows); 
clam-rac=l; lambda=0.5; 
Nsource= 64; theta_min=95; theta_max=445; 
Ndetector= 64; %dtheta-min=-85; dtheta_rnax=+85; 
mtx = zeros(Nsource*Ndetector,rows*cols) ; 
step=(tk-eta-max-theta-min) / (Nsource-1) ; 
theta~vals=[theta~min:step:theta~maxl; 
theta=theta-min; 
for iN=1:64, 

theta-rad = theta*pi/l80; 
x~source=clam~rad*cos(theta~rad) ; 

y-source=clam-radksin(theta-rad) ; 
x~detector=clam~rad*cos(theta~rad+(step/2)); 
y-detec tor=clam-rad*s in( the ta_rad+(s tep/2) )  ; 
source-mat(iN, :)=[x-source y-source]; 
detector-mat(iN, :)=[x-detector y-detector]; 
theta=theta+step; 

end 
for i=l:Nsource, 

for j=l:Ndetector, 
h=line~disp~32(source~mat~i,l),detector~mat~j,l) , 

source~mat(i,2),detector~mat(j,2),x_coords,y~coords~ ; 
end 

end 
save source-clam.txt detector-mat -ascii; 
save detector-clam.txt detector-mat -ascii; 
save clam.txt mtx -ascii; 
S=sparse (clam) ; 

% testing 
f = fopen('Headl.imgt,'rb','ieee-be'); 
img = fread(f,[512 5121,'short1); 
£close(£) ; 
img = img(l:16:512,1:16:512); 
img=img/max(img(:)); 
max(img(:) ) ; 
min(img( : )  ) ; 

figure(1); subplot(2,2,1); imagesc(img); title('origina1 image'); 
colormap(gray(256) ) ; 
sino = S*img(:); sino=reshape(sino,Nsource,Ndetector); 
save sino.txt sino -ascii; 
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figure(2);subplot(2,2,2); imagesc(sin0); colormap(gray(256)); 
title( 'sinogram'); m=backproj (clam,sino); 
m=reshape(m,32,32); 
for 1=1:10000, 

a=sino-reshape(S*m(:),Nsource,Ndetector); 
fprintf(l,'%i %£\nu, 1, max(abs(a(:)))); 
z=S1*a(:); 
m=m+lambda*z; %yk+l(nl,n2)=yk(nl,n2)+lambda*z(nl,n2)*h 
m = max (m, 0) ; 
m = min(m, 1) ; 
if 1==1000, 

subplot(2,2,3); imagesc(m);title('restored image (iter=1000) ' ) ;  

end 
if mod(l,lO)==l, subplot(2,2,4); 

imagesc(reshape(m,32,32));title('restored image'); drawnow; 
end 

end 

Reconstruction algorithm for parallel plate geometry 

% % % % % % % % %  to generate matrix and reconstruct image % % % % % % % % % % %  
rows = 32 ; 
cols = 32; 
x-coords = ((-cols+l):2:(cols-1) ) / (2*cols); 
y-coords = ((-rows+l):2:(rows-1) ) / (2"rows); 
xmax=0.2; ymax=0.7; 
xmin=-0.2; ymin=0.3; 
n_rows=32;n_cols=32; 
slength-min=l; slength_max=32; 
dlength-min=l; dlength_max=32; 
d=l; Nsource=32; Ndetector=32; lambda=0.05; 

s~step=(slength~max-slengths_step=o/Nsourcemin~/N~o~r~e-l; 
d~step=(dlength~max-dlengthd_step=o/Ndetectmin)/~dete~tor-l; 
mtx = zeros(Nsource*Ndetector,n~rows*nncols~; 
slength=slength-min; 
for iN=l:Nsource, 

x-source=-d/2; 
y-source=slength; 
source-mat(iN,:)= [x-source y-source]; 
slength=slength+s-step; 

end 
save source_plate.txt source-mat -ascii; 

dlength=dlength-min; 
for iN=l:Ndetector, 

x_detector=d/2; 
y-detector=dlength; 
detector-mat(iN, : ) =  [x-detector y-detector]; 
dlength=dlength+d-step; 

end 
save detector_plate.txt detector-mat -ascii; 
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for i=l:Nsource, 
for j=l:Ndetector, 

h=pplate~line~32(source~mat(i,l),detector~mat(j,l),source~m~t~i,2~, 
detector~mat(j,2),xmin,xmax,ymin,ymax,n~cols,n~rows); 

mtx( (i-1) *Ndetector+j, : ) = h( : ) ' ; 
end 
end 
save pplate.txt mtx -ascii; 
S=sparse(pplate); 

% testing 
img32 = zeros (32,32) ; img32 (8:24,8:24)=l; 
img32=img32/max(img32(:)); 
max(img32(:)); 
min(img32 ( :  ) ) ; 

figure(1); subplot(2,2,1) ; imagesc(img32); title('origina1 image') ; 
colormap(gray(256)); 
sino = S*img32(:); sino=reshape(sino,Nsource,~detector); 
save sino.txt sino -ascii; 
subplot(2,2,2);imagesc(sino); ~olormap(gray(256));title(~sinogram'); 

pinv(pplate)*sino(:); 
for 1=1:60000, 

a=sino-reshape(S*m,Nsource,Ndetector); 
fprintf(l,'%i %f\nl, 1, max(abs(a(:)))); 
z=S1*a(:); 
m=m+lambda*z; %yk+l(nl,n2)=yk(nl,n2)+lambda*z(nl,n2)*h 
m = max (m, 0) ; 
m = min (m, 1) ; 
if 1==1000, 

subplot(2,2,3); irnagesc(reshape(m,32,32)); 
title('restored image (iter=1000)'); 

end 
if mod(1,lO) ==l, 

subplot(2,2,4); imagesc(reshape(m,32,32)); 
title('restored image'); drawnow; 

end 
end 

To compute line integrals for parallel projections and clam-shell geometry. 

function h=line~disp~32(xl,x2,yl,y2,x~coords,y~coords~ 
% to compute the coordinates of the intersection points 
a=l/length(x-coords)/2; 
b=l/length(y_coords)/2; 
for ix=l:length(x-coords), 

xc=x~coords(ix); 
for iy=l:length(y-coords), 

yc=y-coords(iy) ; 
% translate so the pixel is centered at the origin 
xp=xl -xc ; 
yp=yl-yc; 
xq=x2 -xc ; 
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yq=y2 -yc ; 
% if the line is horizontal 
if abs(yp-yq) < 0.0001 

if abs(yp)<b 
iLength=2*b; 

elseif abs (yp) ==b 
iLength=b; 

else 
iLength=O; 

end 
% if the line is vertical 
elseif abs(xp-xq) < 0.0001 

if abs (xp) <=a 
iLength=2*a; 

elseif abs (xp) ==a 
iLength=a; 

else 
iLength=O; 

end 
else 

iSlope=(yq-yp)/(xq-xp); 
xpl=xp+((-b-yp)/iSlope); 
xql=xp+( (b-yp)/iSlope); 
ypl=yp+( (-a-xp)*iSlope); 
yql=yp+( (a-xp)*iSlope); 
x-int=sort ( [-a, a, xpl, xql] ) ; 
y-int=sort ( [ -b, b, ypl, yql I ) ; 

% line does not intersect the pixel 
if ( min(abs(xpl),abs(xql))>a & min(abs(ypl),abs(yql))>b ) 

iLength=O; 
else 

iLength=sqrt ( (x-int (2) -x-int (3) ) "2+(y-int (2) -y-int (3) ) "2) ; 
end 

end 
h(ix,iy)=iLength; 

end 
end 

To compute line integrals for parallel projections and clam-shell geometry. 

function h=pplate~line~l6(xl,x2,yl,y2,xmin,xmax,ymin,ymax, 
n-cols,n-rows) 

% to compute the coordinates of the intersection points 
yco=o. 5; 
xco=o .5; 
a=((xmax-xmin)/n-cols); 
b=((ymax-ymin)/n-rows); 
for cols=l:n-cols, 

xc=xmin+(cols-l)*((xmax-xmin)/n-cols); 
xc=xc+xcO*a; 
for rows=l:n-rows, 

yc=ymin+(rows-l)*((ymax-pin) /n-rows); 
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yc=yc+ycO*b; 
% translate and rotate so the pixel is centered at the origin 
xp=xl -xc ; 
yp=yl-yc; 
xq=x2 -xc ; 
yq=y2 -yc ; 
% if the line is horizontal 
if abs(yp-yq) < 0.0001 

if abs(yp)<b 
iLength=2*b; 

elseif abs(yp)==b 
iLength=b; 

else 
iLength=O; 

end 
% if the line is vertical 
elseif abs(xp-xq) < 0.0001 

if abs (xp) <=a 
iLength=2*a; 

elseif abs(xp)==a 
iLength=a; 

else 
iLength=O; 

end 
else 

islope= (yq-yp) / (xq-xp) ; 
xpl=xp+((-b-yp)/iSlope); 
xql=xp+((b-yp)/iSlope); 
ypl=yp+((-a-xp)*iSlope); 
yql=yp+((a-xp)*iSlope); 
x-int=sort([-a,a,xpl,xql]); 
y-int=sort([-b,b,ypl,yql]); 
% line does not intersect the pixel 
if ( min(abs(xpl),abs(xql))>a & min(abs(ypl),abs(yql) )>b ) 

iLength=O; 
else 

iLength=sqrt((x-int(2)-~~int(3))~2+(y~int(2)-y-int(3))~2); 
end 

end 
h(cols,rows)=iLength; 

end 
end 

Conjugate Gradient Method 

% Martin King, ICTP, 24 Nov 2004 
%l. Conjugate Gradient Method with Flecther-Reeves (or Polak-Ribiere) 
% to find a vector x that gives a MINIMUM of a function (a scalar.) 
%put initial guess here (x is an n-dimensional vector). 
x=ones(32*32,1); 
global mtx; 
global sino; 
[F] = func(x) ; 
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[Fgrime] = dfunc(x) ; 

%g is for use in Polak-Ribiere 
g=r; 
delta-new=rl*r; 
delta-O=delta-new; 
fp = F; 
%it01 is a convergence tolerance 
ftol=l.e-7; 
ITERMIU( =20000; 
%Don't worry too much about this 
EPS=l.e-lO; 
N=32; 

for iter = 1 : ITERMAX 
%Doing the line search here. First bracket a minimum, then 
% use Golden section to find it. Not using Newton-Raphson as in 
% Shewchuk. So you don't need the second derivative. 
[ax,bx,cx,fa,fb,fc] = func-mnbrak(O,l,x,d); 
[xt,goldenl = func-golden(ax, bx, cx,x, d) ; 
%To recover vector x, which is along d at xt away from initial x. 
x = x + xt. *d; 
%The function value at x is golden as returned by func-golden. 
F = golden; 
[Fgrime] = dfunc (x) ; 
r = -l.*Fgrime; 
delta-old = delta-new; 
%This is Fletcher-Reeves 
delta-new = rl*r; 
%This is Polak-Ribiere 
% delta-new = (Fgrime+g) '*F_prime; 
beta = delta-new/delta-old; 
d = r + b e t a * d ;  
g = r; 
if r'*d <= 0 

d=r ; 
end 
%this convergence criterion is taken from NR. 
% if 2.*abs(F-fp) < ftol.*(abs(F)+abs(fp)+EPS) 
fp = F; 
fprintf(l,'%i %f\nl, iter, F); 

end 

% % % % % % % % % % % % % %  to minimize a function % % % % % % % % % % % % % % % %  
function [£-out] = func(m) 
% %give your own function here. it is a scalar output 

%MSE 
global mtx; 
global sino; 
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% I-divergence 
if ((min(sino)<O) I (min(mtx 

f-out=inf; 
else 

f-out=sum(sino(:) .*log( 
mtx*m) ) ; 

end 

*m) <O) ) 

(sino ( : ) +eps) . / (mtxkm+eps) ) -sin0 ( : ) + 

8 8 8 %  8 8 %  to find the first derivative of the matlab function 
% % % % % % % % % % %  
function [f-prime-out] = dfunc(m) 

%for parallel projections 
% global mtx; 
% global sino; 
% a = sine(:)-mtx*m; 
% fsrirne-out = -2*mtx1*a(:); 

% %for clam-shell geometry 
global mtx; 
global sino; 
a = sino ( : ) -mtxxm; 
fsrime-out = -2*mtx1*a(:); 

% % % % %  to find the minimum of a function with minimum tolerance % % % % %  
function [xmin,golden] = func~golden(ax,bx,cx,x_in,d_in,d~in) 

%l. Given bracket points ax, bx, cx, this function finds the minimum 
% return independent variable as xmin and function value as golden. 
% See NR F77, p.394 

x0 =ax ; 
x3=cx; 
if abs(cx-bx) > abs(bx-ax) 

xl=bx; 
x2=bx+C. * (cx-bx) ; 

else 
x2=bx; 
xl=bx-C. * (bx-ax) ; 

end 
xlt=x-in+xl.*d-in; 
[fll=func(xlt) ; 
x2t=x_in+x2.*d_in; 
[f2]=func(x2t) ; 

while abs(x3-x0) > tol.*(abs(xl)+abs(x2)) 
if £2 < fl 

xO=xl ; 
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xl=x2 ; 
x2=R.*xl+C.*x3; 
fl=f2; 
x2t=x-in+x2.*dPin; 
[f2]=func(x2t) ; 

else 
x3 =x2 ; 
x2 =XI; 
xl=R.*x2+C.*xO; 
f2=fl; 
xlt=x-in+xl.*d-in; 
[fl]=func (xlt) ; 

end 
end 

if £1 < £2 
golden=fl; 
xmin=xl; 

else 
golden=f2; 
xrnin=x2 ; 

end 

% % % % % % %  to bracket minimum a function from it s initial guess 
% % % % % % % % %  
function [ax,bx,cx,fa,fb,fc] = f u n c - m n b r a k ( a x , b x , x - i n n )  

axt=x-in+ax.*d-in; 
[fa] =func (axt) ; 
bxt=x-in+bx.*d-in; 
[fb] =func (bxt) ; 

if fb > fa 
dum=ax ; 
ax=bx; 
bx=durn; 
durn= f b ; 
fb=fa; 
f a=durn; 

end 

%first guess for c 
cx=bx+GOLD.*(bx-ax); 
cxt=x-in+cx.*d-in; 
[fc] =func (cxt) ; 

while fb >= fc 
r= (bx-ax) . * (fb-fc) ; 

q= (bx-cx) . * (fb-fa) ; 
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u=bx- ( (bx-cx) . *q- (bx-ax) . *r) . / 
(2.*abs(max(abs(q-r),TINY)).*sign(q-r)); 

ulim=bx+GLIMIT.*(cx-bx); 
if (bx-u) . * (u-CX) > 0. 

ut=x-in+u.*d-in; 
[fu] =func (ut) ; 
if fu < fc 

ax=bx; 
fa=fb; 
bx=u ; 
fb=fu; 
break; 

elseif fu > fb 
cx=u ; 
fc=fu; 
break ; 

end 
u=cx+GOLD.*(cx-bx); 
ut=x-in+u.*d-in; 
[fu] =func (ut) ; 

elseif (cx-u) .*(u-ulim) > 0. 
ut=x-in+u.*d-in ; 
[fu] =func (ut) ; 
if fu < fc 

bx=cx; 
cx=u; 
u=cx+GOLD. * (CX-bx) ; 
fb=fc; 
fc=fu; 
ut=x-in+u.*d-in; 
[fu]=func(ut) ; 

end 
elseif (u-ulirn) .*(dim-cx) >= 0 

u=ulirn; 
ut=x-in+u.*d-in; 
[fu] =func (ut) ; 

else 
u=cx+GOLD.*(cx-bx); 
ut=x-in+u.*d-in; 
[ful=func(ut) ; 

end 
ax=bx; 
bx=cx; 
cx=u ; 
fa=fb; 
fb=fc; 
fc=fu; 

end 

Algorithm to reconstruct images in the presence of high density object when 
location of object is given 

load sino-thres.txt; 
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load h.txt; 
sinol=sino; 
mtxl=h; ; 
N=32; 
larnbda=0.5; 
S=sparse (h) ; 

% testing 
img32=phantom('Modi£ied Shepp-Logan1,32) ; 

mask= (img32>0) ; % setting the background values &pal to 0 
figure(1); subplot(2,2,1); imagesc(min(img32,l)); 
title('origina1 image');xlabel('rows');ylabel('cols'); 
colormap(gray(256) ) ;  

%make sinogram value greater than threshold make it equal to some large 
value 
sino=S*img32(:); sino =reshape(sino,49,129); 
for i=1:49, 

for j=1:129, 
if sino(i,j)>=0.25, 

sino(i,j)=1.25; 
end 

end 
end 
save sino-thres.txt sino -ascii; 
%figure(l);subplot(2,2,2);imagesc(sino); 
colormap(gray(256));title('sinogram'); 
xlabel('detectors');ylabel('sourcest); 

% make all entries in sinogram and matrix equal to zero if value 
greater than 'large' 
for i=1:49, 

for j=1:129, 
if sino-thres(i,j)==1.25, 

sinol(i, j)=O; 
end 

end 
end 
for i=l:length(sino-thres(:) ) ,  

if sino-thres(i)==1.25, 
mtxl(i, :)=0; 

end 
end 
save sinol.txt sin01 -ascii; 
%figure(l);subplot(2,2,3);imagesc(sinol); 
colormap(gray(256));title('sinogram with 
zerosl);xlabel( 'detectors');ylabel('sources'); 
S=sparse(mtxl); 

% Reconstruction procedure 
m=backproj(S,sinol); 
for 1=1:60000, 

a=sinol-reshape(S*m(:),49,129); 
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% location of object is specified 
if 1>=100, 

m=m.*mask; 
for i=1:32, 

for j=1:32, 
if img32(i, j)>3; 

m(i, j)=6; 
end 

end 
end 

end 

if mod(1,lO) ==l, 
figure(1); imagesc(min(m,l)); colormap(gray(256)); 
title('restored image'); xlabel('rows');ylabel('cols'); 
drawnow; 

end 
end 

Algorithm to reconstruct images in the presence of high density object when prior 
information not provided 

N=32 ; 
rows = 32 ; 
cols = 32; 
lambda=0.5; 
load h.txt; 
mtxl=h; 
S=sparse(h); 

% testing 
img32=phantom('Modi£ied Shepp-Logan1,32);% img32=img32/max(img32(:) ) ;  
% maskl= (img32>0) ; 
% figure(1); subplot(l,2,1); imagesc(min(img32,l)); 
% title( 'original image');xlabel('rows');ylabel('cols'); 
% colormap(gray(256)); 

sino=S*img32(:); sino =reshape(sino,49,129); 
for i=1:49, 

for j=1:129, 
if sino(i, j)>=0.25, 

sino(i,j)=1.25; 
end 

end 
end 

save sino-thres.txt sin0 -ascii; 
figure(l);subplot(2,2,2);imagesc(sino); 
colormap(gray(256));title('sinogram'); 
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% make all entries in sinogram and matrix equal to zero if value 
greater than 'large' 
sinol=sino; 
mtxl=mtx; 
for i=1:49, 

for j=1:129, 
if sino(i, j)==1.25, 

sinol (i, j) =O; 
end 

end 
end 
for i=l:length(sino(:) ) ,  

if sino(i)==1.25, 
mtxl(i, :)=0; 

end 
end 
save sinol.txt sinol -ascii; 

%figure(l);subplot(2,2,3);imagesc(sinol); colormap(gray(256)); 
title('sinogram with zeros');xlabel('detectorsl);ylabel('sources'); 

% metal mask 
mask=zeros(size(img32) ) ;  

for i=l:length(sino(:) ) ,  
if sino (i) >=I. 25, 

idx=find(mtxl(i,:)>O); 
mask (idx) =mask(idx) +l; 

end 
end 
for i=1:32, 

for j=1:32, 
if mask(i,j)<l38, 

mask(i, j) = O ;  
else 

mask(i, j) =l; 
end 

end 
end 

% large mask 
maskl=zeros(size(img32) ) ;  

for i=l:length(sino(:) ) ,  

if sino (i) >0, 
idx=find(mtxl(i,:)>O); 
maskl (idx) =mask1 (idx) +l; 

end 
end 
for i=1:32, 

for j=1:32, 
if maskl(i,j)<l47, 

maskl (i, j) =O; 
else 
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maskl(i, j)=l; 
end 

end 
end 

S=sparse(mtxl); 
m=backproj (S, sinol) ; 
for 1=1:600, 

a=sinol-reshape(S*m(:),49,129); 
fprintf(l,'%i %f\nl, 1, norm(abs(a(:)))); 
z=reshape (S ' *a ( : ) , N, N) ; 
m=reshape(m,32,32)+1ambda*z; 
%yk+l(nl,n2)=yk(nl,n2)+lambda*z(nl,n2)*h 
for i=1:32, 

for j=1:32, 
if mask(i, j)==l; 

m(i, j)=6; 
end 

end 
end 
m=m.*maskl: 

if mod(1,lO) ==l, 
figure(l);imagesc(min(m,l));colormap(gray(256) ) ;  

title('restored image'); xlabel('rows') ;ylabel('cols') ; 

colormap(gray(256));drawnow; 
ena 

end 
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